Shortcuts

Source code for torchgeo.datamodules.sustainbench_crop_yield

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""SustainBench Crop Yield datamodule."""

from typing import Any

from ..datasets import SustainBenchCropYield
from .geo import NonGeoDataModule


[docs]class SustainBenchCropYieldDataModule(NonGeoDataModule): """LightningDataModule for SustainBench Crop Yield dataset. .. versionadded:: 0.5 """
[docs] def __init__( self, batch_size: int = 32, num_workers: int = 0, **kwargs: Any ) -> None: """Initialize a new SustainBenchCropYieldDataModule instance. Args: batch_size: Size of each mini-batch. num_workers: Number of workers for parallel data loading. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.SustainBenchCropYield`. """ super().__init__(SustainBenchCropYield, batch_size, num_workers, **kwargs)
[docs] def setup(self, stage: str) -> None: """Set up datasets. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ if stage in ['fit']: self.train_dataset = SustainBenchCropYield(split='train', **self.kwargs) if stage in ['fit', 'validate']: self.val_dataset = SustainBenchCropYield(split='dev', **self.kwargs) if stage in ['test']: self.test_dataset = SustainBenchCropYield(split='test', **self.kwargs)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources