Source code for torchgeo.datamodules.ssl4eo_benchmark
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""SSL4EO datamodule."""
from typing import Any
import kornia.augmentation as K
from kornia.constants import DataKey, Resample
from ..datasets import SSL4EOLBenchmark
from ..samplers.utils import _to_tuple
from ..transforms import AugmentationSequential
from .geo import NonGeoDataModule
[docs]class SSL4EOLBenchmarkDataModule(NonGeoDataModule):
"""LightningDataModule implementation for the SSL4EO-L Benchmark dataset.
.. versionadded:: 0.5
"""
[docs] def __init__(
self,
batch_size: int = 64,
patch_size: int | tuple[int, int] = 224,
num_workers: int = 0,
**kwargs: Any,
) -> None:
"""Initialize a new SSL4EOLBenchmarkDataModule instance.
Args:
batch_size: Size of each mini-batch.
patch_size: Size of each patch, either ``size`` or ``(height, width)``.
num_workers: Number of workers for parallel data loading.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.SSL4EOLBenchmark`.
"""
super().__init__(SSL4EOLBenchmark, batch_size, num_workers, **kwargs)
self.patch_size = _to_tuple(patch_size)
self.train_aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
K.RandomResizedCrop(_to_tuple(self.patch_size), scale=(0.6, 1.0)),
K.RandomVerticalFlip(p=0.5),
K.RandomHorizontalFlip(p=0.5),
data_keys=['image', 'mask'],
extra_args={
DataKey.MASK: {'resample': Resample.NEAREST, 'align_corners': None}
},
)
self.val_aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
K.CenterCrop(self.patch_size),
data_keys=['image', 'mask'],
)
self.test_aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
K.CenterCrop(self.patch_size),
data_keys=['image', 'mask'],
)