Source code for torchgeo.datamodules.oscd
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""OSCD datamodule."""
from typing import Any
import kornia.augmentation as K
import torch
from torch.utils.data import random_split
from ..datasets import OSCD
from ..samplers.utils import _to_tuple
from ..transforms import AugmentationSequential
from ..transforms.transforms import _RandomNCrop
from .geo import NonGeoDataModule
MEAN = {
'B01': 1565.696044921875,
'B02': 1351.3319091796875,
'B03': 1257.1082763671875,
'B04': 1254.932861328125,
'B05': 1388.689208984375,
'B06': 1827.6710205078125,
'B07': 2050.2744140625,
'B08': 1963.4619140625,
'B8A': 2182.680908203125,
'B09': 629.837646484375,
'B10': 14.855598449707031,
'B11': 1909.8394775390625,
'B12': 1379.6024169921875,
}
STD = {
'B01': 263.7977600097656,
'B02': 394.5567321777344,
'B03': 508.9673767089844,
'B04': 726.4053344726562,
'B05': 686.6111450195312,
'B06': 730.0204467773438,
'B07': 822.0133056640625,
'B08': 842.5917358398438,
'B8A': 895.7645263671875,
'B09': 314.8407287597656,
'B10': 9.417905807495117,
'B11': 984.9249267578125,
'B12': 844.7711181640625,
}
[docs]class OSCDDataModule(NonGeoDataModule):
"""LightningDataModule implementation for the OSCD dataset.
Uses the train/test splits from the dataset and further splits
the train split into train/val splits.
.. versionadded:: 0.2
"""
[docs] def __init__(
self,
batch_size: int = 64,
patch_size: tuple[int, int] | int = 64,
val_split_pct: float = 0.2,
num_workers: int = 0,
**kwargs: Any,
) -> None:
"""Initialize a new OSCDDataModule instance.
Args:
batch_size: Size of each mini-batch.
patch_size: Size of each patch, either ``size`` or ``(height, width)``.
Should be a multiple of 32 for most segmentation architectures.
val_split_pct: Percentage of the dataset to use as a validation set.
num_workers: Number of workers for parallel data loading.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.OSCD`.
"""
super().__init__(OSCD, 1, num_workers, **kwargs)
self.patch_size = _to_tuple(patch_size)
self.val_split_pct = val_split_pct
self.bands = kwargs.get('bands', OSCD.all_bands)
self.mean = torch.tensor([MEAN[b] for b in self.bands])
self.std = torch.tensor([STD[b] for b in self.bands])
self.aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
_RandomNCrop(self.patch_size, batch_size),
data_keys=['image1', 'image2', 'mask'],
)
[docs] def setup(self, stage: str) -> None:
"""Set up datasets.
Args:
stage: Either 'fit', 'validate', 'test', or 'predict'.
"""
if stage in ['fit', 'validate']:
self.dataset = OSCD(split='train', **self.kwargs)
generator = torch.Generator().manual_seed(0)
self.train_dataset, self.val_dataset = random_split(
self.dataset, [1 - self.val_split_pct, self.val_split_pct], generator
)
if stage in ['test']:
self.test_dataset = OSCD(split='test', **self.kwargs)