Shortcuts

Source code for torchgeo.datamodules.fire_risk

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""FireRisk datamodule."""

from typing import Any

import kornia.augmentation as K

from ..datasets import FireRisk
from ..transforms import AugmentationSequential
from .geo import NonGeoDataModule


[docs]class FireRiskDataModule(NonGeoDataModule): """LightningDataModule implementation for the FireRisk dataset. .. versionadded:: 0.5 """
[docs] def __init__( self, batch_size: int = 64, num_workers: int = 0, **kwargs: Any ) -> None: """Initialize a new FireRiskDataModule instance. Args: batch_size: Size of each mini-batch. num_workers: Number of workers for parallel data loading. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.FireRisk`. """ super().__init__(FireRisk, batch_size, num_workers, **kwargs) self.train_aug = AugmentationSequential( K.Normalize(mean=self.mean, std=self.std), K.RandomRotation(p=0.5, degrees=90), K.RandomHorizontalFlip(p=0.5), K.RandomVerticalFlip(p=0.5), K.RandomSharpness(p=0.5), K.RandomErasing(p=0.1), K.ColorJitter(p=0.5, brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), data_keys=['image'], )
[docs] def setup(self, stage: str) -> None: """Set up datasets. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ if stage in ['fit']: self.train_dataset = FireRisk(split='train', **self.kwargs) if stage in ['fit', 'validate']: self.val_dataset = FireRisk(split='val', **self.kwargs)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources