Source code for torchgeo.datamodules.fire_risk
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""FireRisk datamodule."""
from typing import Any
import kornia.augmentation as K
from ..datasets import FireRisk
from ..transforms import AugmentationSequential
from .geo import NonGeoDataModule
[docs]class FireRiskDataModule(NonGeoDataModule):
"""LightningDataModule implementation for the FireRisk dataset.
.. versionadded:: 0.5
"""
[docs] def __init__(
self, batch_size: int = 64, num_workers: int = 0, **kwargs: Any
) -> None:
"""Initialize a new FireRiskDataModule instance.
Args:
batch_size: Size of each mini-batch.
num_workers: Number of workers for parallel data loading.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.FireRisk`.
"""
super().__init__(FireRisk, batch_size, num_workers, **kwargs)
self.train_aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
K.RandomRotation(p=0.5, degrees=90),
K.RandomHorizontalFlip(p=0.5),
K.RandomVerticalFlip(p=0.5),
K.RandomSharpness(p=0.5),
K.RandomErasing(p=0.1),
K.ColorJitter(p=0.5, brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
data_keys=['image'],
)
[docs] def setup(self, stage: str) -> None:
"""Set up datasets.
Args:
stage: Either 'fit', 'validate', 'test', or 'predict'.
"""
if stage in ['fit']:
self.train_dataset = FireRisk(split='train', **self.kwargs)
if stage in ['fit', 'validate']:
self.val_dataset = FireRisk(split='val', **self.kwargs)