Shortcuts

Source code for torchgeo.datasets.usavars

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""USAVars dataset."""

import glob
import os
from collections.abc import Callable, Sequence
from typing import ClassVar

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import rasterio
import torch
from matplotlib.figure import Figure
from torch import Tensor

from .errors import DatasetNotFoundError
from .geo import NonGeoDataset
from .utils import Path, download_url, extract_archive


[docs]class USAVars(NonGeoDataset): """USAVars dataset. The USAVars dataset is reproduction of the dataset used in the paper "`A generalizable and accessible approach to machine learning with global satellite imagery <https://doi.org/10.1038/s41467-021-24638-z>`_". Specifically, this dataset includes 1 sq km. crops of NAIP imagery resampled to 4m/px cenetered on ~100k points that are sampled randomly from the contiguous states in the USA. Each point contains three continuous valued labels (taken from the dataset released in the paper): tree cover percentage, elevation, and population density. Dataset format: * images are 4-channel GeoTIFFs * labels are singular float values Dataset labels: * tree cover * elevation * population density If you use this dataset in your research, please cite the following paper: * https://doi.org/10.1038/s41467-021-24638-z .. versionadded:: 0.3 """ data_url = 'https://hf.co/datasets/torchgeo/usavars/resolve/01377abfaf50c0cc8548aaafb79533666bbf288f/{}' dirname = 'uar' md5 = '677e89fd20e5dd0fe4d29b61827c2456' label_urls: ClassVar[dict[str, str]] = { 'housing': data_url.format('housing.csv'), 'income': data_url.format('income.csv'), 'roads': data_url.format('roads.csv'), 'nightlights': data_url.format('nightlights.csv'), 'population': data_url.format('population.csv'), 'elevation': data_url.format('elevation.csv'), 'treecover': data_url.format('treecover.csv'), } split_metadata: ClassVar[dict[str, dict[str, str]]] = { 'train': { 'url': data_url.format('train_split.txt'), 'filename': 'train_split.txt', 'md5': '3f58fffbf5fe177611112550297200e7', }, 'val': { 'url': data_url.format('val_split.txt'), 'filename': 'val_split.txt', 'md5': 'bca7183b132b919dec0fc24fb11662a0', }, 'test': { 'url': data_url.format('test_split.txt'), 'filename': 'test_split.txt', 'md5': '97bb36bc003ae0bf556a8d6e8f77141a', }, } ALL_LABELS = ('treecover', 'elevation', 'population')
[docs] def __init__( self, root: Path = 'data', split: str = 'train', labels: Sequence[str] = ALL_LABELS, transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, download: bool = False, checksum: bool = False, ) -> None: """Initialize a new USAVars dataset instance. Args: root: root directory where dataset can be found split: train/val/test split to load labels: list of labels to include transforms: a function/transform that takes input sample and its target as entry and returns a transformed version download: if True, download dataset and store it in the root directory checksum: if True, check the MD5 of the downloaded files (may be slow) Raises: AssertionError: if invalid labels are provided DatasetNotFoundError: If dataset is not found and *download* is False. """ self.root = root assert split in self.split_metadata self.split = split for lab in labels: assert lab in self.ALL_LABELS self.labels = labels self.transforms = transforms self.download = download self.checksum = checksum self._verify() self.files = self._load_files() self.label_dfs = { lab: pd.read_csv(os.path.join(self.root, lab + '.csv'), index_col='ID') for lab in self.labels }
[docs] def __getitem__(self, index: int) -> dict[str, Tensor]: """Return an index within the dataset. Args: index: index to return Returns: data and label at that index """ tif_file = self.files[index] id_ = tif_file[5:-4] sample = { 'labels': Tensor( [self.label_dfs[lab].loc[id_][lab] for lab in self.labels] ), 'image': self._load_image(os.path.join(self.root, 'uar', tif_file)), 'centroid_lat': Tensor([self.label_dfs[self.labels[0]].loc[id_]['lat']]), 'centroid_lon': Tensor([self.label_dfs[self.labels[0]].loc[id_]['lon']]), } if self.transforms is not None: sample = self.transforms(sample) return sample
[docs] def __len__(self) -> int: """Return the number of data points in the dataset. Returns: length of the dataset """ return len(self.files)
def _load_files(self) -> list[str]: """Loads file names.""" with open(os.path.join(self.root, f'{self.split}_split.txt')) as f: files = f.read().splitlines() return files def _load_image(self, path: Path) -> Tensor: """Load a single image. Args: path: path to the image Returns: the image """ with rasterio.open(path) as f: array: np.typing.NDArray[np.int_] = f.read() tensor = torch.from_numpy(array).float() return tensor def _verify(self) -> None: """Verify the integrity of the dataset.""" # Check if the extracted files already exist pathname = os.path.join(self.root, 'uar') csv_pathname = os.path.join(self.root, '*.csv') split_pathname = os.path.join(self.root, '*_split.txt') csv_split_count = (len(glob.glob(csv_pathname)), len(glob.glob(split_pathname))) if glob.glob(pathname) and csv_split_count == (7, 3): return # Check if the zip files have already been downloaded pathname = os.path.join(self.root, self.dirname + '.zip') if glob.glob(pathname) and csv_split_count == (7, 3): self._extract() return # Check if the user requested to download the dataset if not self.download: raise DatasetNotFoundError(self) self._download() self._extract() def _download(self) -> None: """Download the dataset.""" for f_name in self.label_urls: download_url(self.label_urls[f_name], self.root, filename=f_name + '.csv') download_url(self.data_url, self.root, md5=self.md5 if self.checksum else None) for metadata in self.split_metadata.values(): download_url( metadata['url'], self.root, md5=metadata['md5'] if self.checksum else None, ) def _extract(self) -> None: """Extract the dataset.""" extract_archive(os.path.join(self.root, self.dirname + '.zip'))
[docs] def plot( self, sample: dict[str, Tensor], show_labels: bool = True, suptitle: str | None = None, ) -> Figure: """Plot a sample from the dataset. Args: sample: a sample returned by :meth:`__getitem__` show_labels: flag indicating whether to show labels above panel suptitle: optional string to use as a suptitle Returns: a matplotlib Figure with the rendered sample """ image = sample['image'][:3].numpy() # get RGB inds image = np.moveaxis(image, 0, 2) fig, axs = plt.subplots(figsize=(10, 10)) axs.imshow(image) axs.axis('off') if show_labels: labels = [(lab, val) for lab, val in sample.items() if lab != 'image'] label_string = '' for lab, val in labels: label_string += f'{lab}={round(val[0].item(), 2)} ' axs.set_title(label_string) if suptitle is not None: plt.suptitle(suptitle) return fig

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources