Source code for torchgeo.datasets.seco

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""Sentinel 2 imagery from the Seasonal Contrast paper."""

import os
import random
from typing import Callable, Optional

import matplotlib.pyplot as plt
import numpy as np
import rasterio
import torch
from matplotlib.figure import Figure
from PIL import Image
from torch import Tensor

from .geo import NonGeoDataset
from .utils import download_url, extract_archive, percentile_normalization

[docs]class SeasonalContrastS2(NonGeoDataset): """Sentinel 2 imagery from the Seasonal Contrast paper. The `Seasonal Contrast imagery <>`_ dataset contains Sentinel 2 imagery patches sampled from different points in time around the 10k most populated cities on Earth. Dataset features: * Two versions: 100K and 1M patches * 12 band Sentinel 2 imagery from 5 points in time at each location If you use this dataset in your research, please cite the following paper: * """ all_bands = [ "B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B11", "B12", ] rgb_bands = ["B4", "B3", "B2"] metadata = { "100k": { "url": "", "md5": "ebf2d5e03adc6e657f9a69a20ad863e0", "filename": "", "directory": "seasonal_contrast_100k", }, "1m": { "url": "", "md5": "187963d852d4d3ce6637743ec3a4bd9e", "filename": "", "directory": "seasonal_contrast_1m", }, }
[docs] def __init__( self, root: str = "data", version: str = "100k", seasons: int = 1, bands: list[str] = rgb_bands, transforms: Optional[Callable[[dict[str, Tensor]], dict[str, Tensor]]] = None, download: bool = False, checksum: bool = False, ) -> None: """Initialize a new SeasonalContrastS2 instance. .. versionadded:: 0.5 The *seasons* parameter. Args: root: root directory where dataset can be found version: one of "100k" or "1m" for the version of the dataset to use seasons: number of seasonal patches to sample per location, 1--5 bands: list of bands to load transforms: a function/transform that takes input sample and its target as entry and returns a transformed version download: if True, download dataset and store it in the root directory checksum: if True, check the MD5 of the downloaded files (may be slow) Raises: AssertionError: if ``version`` argument is invalid RuntimeError: if ``download=False`` and data is not found, or checksums don't match """ assert version in self.metadata.keys() assert seasons in range(5) for band in bands: assert band in self.all_bands self.root = root self.version = version self.seasons = seasons self.bands = bands self.transforms = transforms = download self.checksum = checksum self._verify()
[docs] def __getitem__(self, index: int) -> dict[str, Tensor]: """Return an index within the dataset. Args: index: index to return Returns: sample with an "image" in SCxHxW format where S is the number of seasons .. versionchanged:: 0.5 Image shape changed from 5xCxHxW to SCxHxW """ root = os.path.join( self.root, self.metadata[self.version]["directory"], f"{index:06}" ) subdirs = [f for f in os.listdir(root) if os.path.isdir(os.path.join(root, f))] subdirs = random.sample(subdirs, self.seasons) images = [self._load_patch(root, subdir) for subdir in subdirs] sample = {"image":} if self.transforms is not None: sample = self.transforms(sample) return sample
[docs] def __len__(self) -> int: """Return the number of data points in the dataset. Returns: length of the dataset """ return (10**5 if self.version == "100k" else 10**6) // 5
def _load_patch(self, root: str, subdir: str) -> Tensor: """Load a single image patch. Args: root: root directory containing all seasons subdir: season to load Returns: the image with the subset of bands specified by ``self.bands`` """ all_data = [] for band in self.bands: fn = os.path.join(root, subdir, f"{band}.tif") with as f: band_data = height, width = band_data.shape size = min(height, width) if size < 264: # TODO: PIL resize is much slower than cv2, we should check to see # what could be sped up throughout later. There is also a potential # slowdown here from converting to/from a PIL Image just to resize. # pil_image = Image.fromarray(band_data) # Moved in PIL 9.1.0 try: resample = Image.Resampling.BILINEAR except AttributeError: resample = Image.BILINEAR band_data = np.array( pil_image.resize((264, 264), resample=resample) ) all_data.append(band_data) image = torch.from_numpy(np.stack(all_data, axis=0)) return image def _verify(self) -> None: """Verify the integrity of the dataset. Raises: RuntimeError: if ``download=False`` but dataset is missing or checksum fails """ # Check if the extracted files already exist directory_path = os.path.join( self.root, self.metadata[self.version]["directory"] ) if os.path.exists(directory_path): return # Check if the zip files have already been downloaded zip_path = os.path.join(self.root, self.metadata[self.version]["filename"]) if os.path.exists(zip_path): self._extract() return # Check if the user requested to download the dataset if not raise RuntimeError( f"Dataset not found in `root={self.root}` and `download=False`, " "either specify a different `root` directory or use `download=True` " "to automatically download the dataset." ) # Download the dataset self._download() self._extract() def _download(self) -> None: """Download the dataset.""" download_url( self.metadata[self.version]["url"], self.root, filename=self.metadata[self.version]["filename"], md5=self.metadata[self.version]["md5"] if self.checksum else None, ) def _extract(self) -> None: """Extract the dataset.""" extract_archive( os.path.join(self.root, self.metadata[self.version]["filename"]) )
[docs] def plot( self, sample: dict[str, Tensor], show_titles: bool = True, suptitle: Optional[str] = None, ) -> Figure: """Plot a sample from the dataset. Args: sample: a sample returned by :meth:`__getitem__` show_titles: flag indicating whether to show titles above each panel suptitle: optional string to use as a suptitle Returns: a matplotlib Figure with the rendered sample Raises: ValueError: if the RGB bands are included in ``self.bands`` or the sample contains a "prediction" key .. versionadded:: 0.2 """ if "prediction" in sample: raise ValueError("This dataset doesn't support plotting predictions") rgb_indices = [] for band in self.rgb_bands: if band in self.bands: rgb_indices.append(self.bands.index(band)) else: raise ValueError("Dataset doesn't contain some of the RGB bands") fig, axes = plt.subplots(ncols=self.seasons, figsize=(20, 4)) if self.seasons == 1: axes = [axes] indices = torch.tensor(rgb_indices) for i in range(self.seasons): image = sample["image"][indices + i * len(self.bands)].numpy() image = np.rollaxis(image, 0, 3) image = percentile_normalization(image, 0, 100) axes[i].imshow(image) axes[i].axis("off") if suptitle is not None: plt.suptitle(suptitle) return fig

© Copyright 2021, Microsoft Corporation. Revision b9653beb.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: stable
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources