Source code for torchgeo.datasets.agb_live_woody_density

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""Aboveground Live Woody Biomass Density dataset."""

import json
import os
from import Iterable
from typing import Any, Callable, Optional, Union

import matplotlib.pyplot as plt
from matplotlib.figure import Figure
from import CRS

from .geo import RasterDataset
from .utils import download_url

[docs]class AbovegroundLiveWoodyBiomassDensity(RasterDataset): """Aboveground Live Woody Biomass Density dataset. The `Aboveground Live Woody Biomass Density dataset < -biomass-density/about>`_ is a global-scale, wall-to-wall map of aboveground biomass at ~30m resolution for the year 2000. Dataset features: * Masks with per pixel live woody biomass density estimates in megagrams biomass per hectare at ~30m resolution (~40,000x40,0000 px) Dataset format: * geojson file that contains download links to tif files * single-channel geotiffs with the pixel values representing biomass density If you use this dataset in your research, please give credit to: * `Global Forest Watch <>`_ .. versionadded:: 0.3 """ is_image = False url = "" # noqa: E501 base_filename = "Aboveground_Live_Woody_Biomass_Density.geojson" filename_glob = "*N_*E.*" filename_regex = r"""^ (?P<latitude>[0-9][0-9][A-Z])_ (?P<longitude>[0-9][0-9][0-9][A-Z])* """
[docs] def __init__( self, paths: Union[str, Iterable[str]] = "data", crs: Optional[CRS] = None, res: Optional[float] = None, transforms: Optional[Callable[[dict[str, Any]], dict[str, Any]]] = None, download: bool = False, cache: bool = True, ) -> None: """Initialize a new Dataset instance. Args: paths: one or more root directories to search or files to load crs: :term:`coordinate reference system (CRS)` to warp to (defaults to the CRS of the first file found) res: resolution of the dataset in units of CRS (defaults to the resolution of the first file found) transforms: a function/transform that takes an input sample and returns a transformed version download: if True, download dataset and store it in the root directory cache: if True, cache file handle to speed up repeated sampling Raises: FileNotFoundError: if no files are found in ``paths`` .. versionchanged:: 0.5 *root* was renamed to *paths*. """ self.paths = paths = download self._verify() super().__init__(paths, crs, res, transforms=transforms, cache=cache)
def _verify(self) -> None: """Verify the integrity of the dataset. Raises: RuntimeError: if dataset is missing """ # Check if the extracted files already exist if self.files: return # Check if the user requested to download the dataset if not raise RuntimeError( f"Dataset not found in `paths={self.paths!r}` and `download=False`, " "either specify a different `paths` or use `download=True` " "to automatically download the dataset." ) # Download the dataset self._download() def _download(self) -> None: """Download the dataset.""" assert isinstance(self.paths, str) download_url(self.url, self.paths, self.base_filename) with open(os.path.join(self.paths, self.base_filename)) as f: content = json.load(f) for item in content["features"]: download_url( item["properties"]["Mg_px_1_download"], self.paths, item["properties"]["tile_id"] + ".tif", )
[docs] def plot( self, sample: dict[str, Any], show_titles: bool = True, suptitle: Optional[str] = None, ) -> Figure: """Plot a sample from the dataset. Args: sample: a sample returned by :meth:`RasterDataset.__getitem__` show_titles: flag indicating whether to show titles above each panel suptitle: optional string to use as a suptitle Returns: a matplotlib Figure with the rendered sample """ mask = sample["mask"].squeeze() ncols = 1 showing_predictions = "prediction" in sample if showing_predictions: pred = sample["prediction"].squeeze() ncols = 2 fig, axs = plt.subplots(nrows=1, ncols=ncols, figsize=(ncols * 4, 4)) if showing_predictions: axs[0].imshow(mask) axs[0].axis("off") axs[1].imshow(pred) axs[1].axis("off") if show_titles: axs[0].set_title("Mask") axs[1].set_title("Prediction") else: axs.imshow(mask) axs.axis("off") if show_titles: axs.set_title("Mask") if suptitle is not None: plt.suptitle(suptitle) return fig

© Copyright 2021, Microsoft Corporation. Revision 6694cbd4.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: stable
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources