Shortcuts

Source code for torchgeo.datamodules.spacenet

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""SpaceNet datamodules."""

from typing import Any

import kornia.augmentation as K
import torch
from torch import Tensor
from torch.utils.data import random_split

from ..datasets import SpaceNet1
from ..transforms import AugmentationSequential
from .geo import NonGeoDataModule


[docs]class SpaceNet1DataModule(NonGeoDataModule): """LightningDataModule implementation for the SpaceNet1 dataset. Randomly splits into train/val/test. .. versionadded:: 0.4 """
[docs] def __init__( self, batch_size: int = 64, num_workers: int = 0, val_split_pct: float = 0.1, test_split_pct: float = 0.2, **kwargs: Any, ) -> None: """Initialize a new SpaceNet1DataModule instance. Args: batch_size: Size of each mini-batch. num_workers: Number of workers for parallel data loading. val_split_pct: Percentage of the dataset to use as a validation set. test_split_pct: Percentage of the dataset to use as a test set. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.SpaceNet1`. """ super().__init__(SpaceNet1, batch_size, num_workers, **kwargs) self.val_split_pct = val_split_pct self.test_split_pct = test_split_pct self.train_aug = AugmentationSequential( K.Normalize(mean=self.mean, std=self.std), K.PadTo((448, 448)), K.RandomRotation(p=0.5, degrees=90), K.RandomHorizontalFlip(p=0.5), K.RandomVerticalFlip(p=0.5), K.RandomSharpness(p=0.5), K.ColorJitter(p=0.5, brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), data_keys=['image', 'mask'], ) self.aug = AugmentationSequential( K.Normalize(mean=self.mean, std=self.std), K.PadTo((448, 448)), data_keys=['image', 'mask'], )
[docs] def setup(self, stage: str) -> None: """Set up datasets. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ self.dataset = SpaceNet1(**self.kwargs) generator = torch.Generator().manual_seed(0) self.train_dataset, self.val_dataset, self.test_dataset = random_split( self.dataset, [ 1 - self.val_split_pct - self.test_split_pct, self.val_split_pct, self.test_split_pct, ], generator, )
[docs] def on_after_batch_transfer( self, batch: dict[str, Tensor], dataloader_idx: int ) -> dict[str, Tensor]: """Apply batch augmentations to the batch after it is transferred to the device. Args: batch: A batch of data that needs to be altered or augmented. dataloader_idx: The index of the dataloader to which the batch belongs. Returns: A batch of data. """ # We add 1 to the mask to map the current {background, building} labels to # the values {1, 2}. This is necessary because we add 0 padding to the # mask that we want to ignore in the loss function. batch['mask'] += 1 return super().on_after_batch_transfer(batch, dataloader_idx)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources