Shortcuts

Source code for torchgeo.datamodules.sentinel2_nccm

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""Sentinel-2 and NCCM datamodule."""

from typing import Any

import kornia.augmentation as K
import torch
from kornia.constants import DataKey, Resample
from matplotlib.figure import Figure

from ..datasets import NCCM, Sentinel2, random_grid_cell_assignment
from ..samplers import GridGeoSampler, RandomBatchGeoSampler
from ..samplers.utils import _to_tuple
from ..transforms import AugmentationSequential
from .geo import GeoDataModule


[docs]class Sentinel2NCCMDataModule(GeoDataModule): """LightningDataModule implementation for the Sentinel-2 and NCCM dataset. .. versionadded:: 0.6 """
[docs] def __init__( self, batch_size: int = 64, patch_size: int | tuple[int, int] = 64, length: int | None = None, num_workers: int = 0, **kwargs: Any, ) -> None: """Initialize a new Sentinel2NCCMDataModule instance. Args: batch_size: Size of each mini-batch. patch_size: Size of each patch, either ``size`` or ``(height, width)``. length: Length of each training epoch. num_workers: Number of workers for parallel data loading. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.NCCM` (prefix keys with ``nccm_``) and :class:`~torchgeo.datasets.Sentinel2` (prefix keys with ``sentinel2_``). """ # Define prefix for NCCM and Sentinel-2 arguments nccm_signature = 'nccm_' sentinel2_signature = 'sentinel2_' self.nccm_kwargs = {} self.sentinel2_kwargs = {} for key, val in kwargs.items(): # Check if the current key starts with the NCCM prefix if key.startswith(nccm_signature): # If so, extract the key-value pair to the NCCM dictionary self.nccm_kwargs[key[len(nccm_signature) :]] = val # Check if the current key starts with the Sentinel-2 prefix elif key.startswith(sentinel2_signature): # If so, extract the key-value pair to the Sentinel-2 dictionary self.sentinel2_kwargs[key[len(sentinel2_signature) :]] = val super().__init__( NCCM, batch_size, patch_size, length, num_workers, **self.nccm_kwargs ) self.train_aug = AugmentationSequential( K.Normalize(mean=self.mean, std=self.std), K.RandomResizedCrop(_to_tuple(self.patch_size), scale=(0.6, 1.0)), K.RandomVerticalFlip(p=0.5), K.RandomHorizontalFlip(p=0.5), data_keys=['image', 'mask'], extra_args={ DataKey.MASK: {'resample': Resample.NEAREST, 'align_corners': None} }, ) self.aug = AugmentationSequential( K.Normalize(mean=self.mean, std=self.std), data_keys=['image', 'mask'] )
[docs] def setup(self, stage: str) -> None: """Set up datasets and samplers. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ self.sentinel2 = Sentinel2(**self.sentinel2_kwargs) self.nccm = NCCM(**self.nccm_kwargs) self.dataset = self.sentinel2 & self.nccm generator = torch.Generator().manual_seed(0) (self.train_dataset, self.val_dataset, self.test_dataset) = ( random_grid_cell_assignment( self.dataset, [0.8, 0.1, 0.1], grid_size=8, generator=generator ) ) if stage in ['fit']: self.train_batch_sampler = RandomBatchGeoSampler( self.train_dataset, self.patch_size, self.batch_size, self.length ) if stage in ['fit', 'validate']: self.val_sampler = GridGeoSampler( self.val_dataset, self.patch_size, self.patch_size ) if stage in ['test']: self.test_sampler = GridGeoSampler( self.test_dataset, self.patch_size, self.patch_size )
[docs] def plot(self, *args: Any, **kwargs: Any) -> Figure: """Run NCCM plot method. Args: *args: Arguments passed to plot method. **kwargs: Keyword arguments passed to plot method. Returns: A matplotlib Figure with the image, ground truth, and predictions. """ return self.nccm.plot(*args, **kwargs)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources