Source code for torchgeo.datamodules.resisc45
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""RESISC45 datamodule."""
from typing import Any
import kornia.augmentation as K
import torch
from ..datasets import RESISC45
from ..transforms import AugmentationSequential
from .geo import NonGeoDataModule
[docs]class RESISC45DataModule(NonGeoDataModule):
"""LightningDataModule implementation for the RESISC45 dataset.
Uses the train/val/test splits from the dataset.
"""
# Computed on the train set
mean = torch.tensor([93.89391792, 97.11226906, 87.56775284])
std = torch.tensor([51.84919672, 47.2365918, 47.06308786])
[docs] def __init__(
self, batch_size: int = 64, num_workers: int = 0, **kwargs: Any
) -> None:
"""Initialize a new RESISC45DataModule instance.
Args:
batch_size: Size of each mini-batch.
num_workers: Number of workers for parallel data loading.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.RESISC45`.
"""
super().__init__(RESISC45, batch_size, num_workers, **kwargs)
self.train_aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
K.RandomRotation(p=0.5, degrees=90),
K.RandomHorizontalFlip(p=0.5),
K.RandomVerticalFlip(p=0.5),
K.RandomSharpness(p=0.5),
K.RandomErasing(p=0.1),
K.ColorJitter(p=0.5, brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
data_keys=['image'],
)