Shortcuts

Source code for torchgeo.datamodules.resisc45

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""RESISC45 datamodule."""

from typing import Any

import kornia.augmentation as K
import torch

from ..datasets import RESISC45
from ..transforms import AugmentationSequential
from .geo import NonGeoDataModule


[docs]class RESISC45DataModule(NonGeoDataModule): """LightningDataModule implementation for the RESISC45 dataset. Uses the train/val/test splits from the dataset. """ # Computed on the train set mean = torch.tensor([93.89391792, 97.11226906, 87.56775284]) std = torch.tensor([51.84919672, 47.2365918, 47.06308786])
[docs] def __init__( self, batch_size: int = 64, num_workers: int = 0, **kwargs: Any ) -> None: """Initialize a new RESISC45DataModule instance. Args: batch_size: Size of each mini-batch. num_workers: Number of workers for parallel data loading. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.RESISC45`. """ super().__init__(RESISC45, batch_size, num_workers, **kwargs) self.train_aug = AugmentationSequential( K.Normalize(mean=self.mean, std=self.std), K.RandomRotation(p=0.5, degrees=90), K.RandomHorizontalFlip(p=0.5), K.RandomVerticalFlip(p=0.5), K.RandomSharpness(p=0.5), K.RandomErasing(p=0.1), K.ColorJitter(p=0.5, brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), data_keys=['image'], )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources