Source code for torchgeo.datamodules.reforestree
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""ReforesTree datamodule."""
from typing import Any
import kornia.augmentation as K
import torch
from torch.utils.data import random_split
from ..datasets import ReforesTree
from ..samplers.utils import _to_tuple
from .geo import NonGeoDataModule
[docs]class ReforesTreeDataModule(NonGeoDataModule):
"""LightningDataModule implementation for the ReforesTree dataset.
.. versionadded:: 0.7
"""
[docs] def __init__(
self,
batch_size: int = 64,
patch_size: tuple[int, int] | int = 64,
num_workers: int = 0,
val_split_pct: float = 0.2,
test_split_pct: float = 0.2,
**kwargs: Any,
) -> None:
"""Initialize a new ReforesTreeDataModule instance.
Args:
batch_size: Size of each mini-batch.
patch_size: Size of each patch, either ``size`` or ``(height, width)``.
Should be a multiple of 32 for most segmentation architectures.
num_workers: Number of workers for parallel data loading.
val_split_pct: Percentage of the dataset to use as a validation set.
test_split_pct: Percentage of the dataset to use as a test set.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.ReforesTree`.
"""
super().__init__(
ReforesTree, batch_size=batch_size, num_workers=num_workers, **kwargs
)
self.val_split_pct = val_split_pct
self.test_split_pct = test_split_pct
self.patch_size = _to_tuple(patch_size)
self.train_aug = K.AugmentationSequential(
K.Normalize(self.mean, self.std),
K.RandomCrop(self.patch_size, pad_if_needed=True),
K.RandomHorizontalFlip(p=0.5),
K.RandomVerticalFlip(p=0.5),
data_keys=None,
keepdim=True,
)
self.aug = K.AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
K.CenterCrop(self.patch_size),
data_keys=None,
keepdim=True,
)
[docs] def setup(self, stage: str) -> None:
"""Set up datasets.
Args:
stage: Either 'fit', 'validate', 'test', or 'predict'.
"""
self.dataset = ReforesTree(**self.kwargs)
generator = torch.Generator().manual_seed(0)
self.train_dataset, self.val_dataset, self.test_dataset = random_split(
self.dataset,
[
1 - self.val_split_pct - self.test_split_pct,
self.val_split_pct,
self.test_split_pct,
],
generator,
)