Source code for torchgeo.datamodules.nasa_marine_debris
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""NASA Marine Debris datamodule."""
from typing import Any
import kornia.augmentation as K
import torch
from torch.utils.data import random_split
from ..datasets import NASAMarineDebris
from ..transforms import AugmentationSequential
from .geo import NonGeoDataModule
from .utils import AugPipe, collate_fn_detection
[docs]class NASAMarineDebrisDataModule(NonGeoDataModule):
"""LightningDataModule implementation for the NASA Marine Debris dataset.
.. versionadded:: 0.2
"""
std = torch.tensor(255)
[docs] def __init__(
self,
batch_size: int = 64,
num_workers: int = 0,
val_split_pct: float = 0.2,
test_split_pct: float = 0.2,
**kwargs: Any,
) -> None:
"""Initialize a new NASAMarineDebrisDataModule instance.
Args:
batch_size: Size of each mini-batch.
num_workers: Number of workers for parallel data loading.
val_split_pct: Percentage of the dataset to use as a validation set.
test_split_pct: Percentage of the dataset to use as a test set.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.NASAMarineDebris`.
"""
super().__init__(NASAMarineDebris, batch_size, num_workers, **kwargs)
self.val_split_pct = val_split_pct
self.test_split_pct = test_split_pct
self.aug = AugPipe(
AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std), data_keys=['image', 'boxes']
),
batch_size,
)
self.collate_fn = collate_fn_detection
[docs] def setup(self, stage: str) -> None:
"""Set up datasets.
Args:
stage: Either 'fit', 'validate', 'test', or 'predict'.
"""
self.dataset = NASAMarineDebris(**self.kwargs)
generator = torch.Generator().manual_seed(0)
self.train_dataset, self.val_dataset, self.test_dataset = random_split(
self.dataset,
[
1 - self.val_split_pct - self.test_split_pct,
self.val_split_pct,
self.test_split_pct,
],
generator,
)