Source code for torchgeo.datamodules.landcoverai
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""LandCover.ai datamodule."""
from typing import Any
import kornia.augmentation as K
from ..datasets import LandCoverAI
from ..transforms import AugmentationSequential
from .geo import NonGeoDataModule
[docs]class LandCoverAIDataModule(NonGeoDataModule):
"""LightningDataModule implementation for the LandCover.ai dataset.
Uses the train/val/test splits from the dataset.
"""
[docs] def __init__(
self, batch_size: int = 64, num_workers: int = 0, **kwargs: Any
) -> None:
"""Initialize a new LandCoverAIDataModule instance.
Args:
batch_size: Size of each mini-batch.
num_workers: Number of workers for parallel data loading.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.LandCoverAI`.
"""
super().__init__(LandCoverAI, batch_size, num_workers, **kwargs)
self.train_aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
K.RandomRotation(p=0.5, degrees=90),
K.RandomHorizontalFlip(p=0.5),
K.RandomVerticalFlip(p=0.5),
K.RandomSharpness(p=0.5),
K.ColorJitter(p=0.5, brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
data_keys=['image', 'mask'],
)
self.aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std), data_keys=['image', 'mask']
)