Shortcuts

Source code for torchgeo.datamodules.iobench

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""I/O benchmark datamodule."""

from typing import Any

from ..datasets import IOBench
from ..samplers import GridGeoSampler, RandomGeoSampler
from .geo import GeoDataModule


[docs]class IOBenchDataModule(GeoDataModule): """LightningDataModule implementation for the I/O benchmark dataset. .. versionadded:: 0.6 """
[docs] def __init__( self, batch_size: int = 32, patch_size: int | tuple[int, int] = 256, length: int | None = None, num_workers: int = 0, **kwargs: Any, ) -> None: """Initialize a new IOBenchDataModule instance. Args: batch_size: Size of each mini-batch. patch_size: Size of each patch, either ``size`` or ``(height, width)``. length: Length of each training epoch. num_workers: Number of workers for parallel data loading. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.IOBench`. """ super().__init__( IOBench, batch_size=batch_size, patch_size=patch_size, length=length, num_workers=num_workers, **kwargs, )
[docs] def setup(self, stage: str) -> None: """Set up datasets. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ self.dataset = IOBench(**self.kwargs) if stage in ['fit']: self.train_sampler = RandomGeoSampler( self.dataset, self.patch_size, self.length ) if stage in ['fit', 'validate']: self.val_sampler = GridGeoSampler( self.dataset, self.patch_size, self.patch_size ) if stage in ['test']: self.test_sampler = GridGeoSampler( self.dataset, self.patch_size, self.patch_size )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources