Source code for torchgeo.datamodules.geonrw
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""GeoNRW datamodule."""
import os
from typing import Any
import kornia.augmentation as K
from torch.utils.data import Subset
from ..datasets import GeoNRW
from ..transforms import AugmentationSequential
from .geo import NonGeoDataModule
from .utils import group_shuffle_split
[docs]class GeoNRWDataModule(NonGeoDataModule):
"""LightningDataModule implementation for the GeoNRW dataset.
Implements 80/20 train/val splits based on city locations.
See :func:`setup` for more details.
.. versionadded:: 0.6
"""
[docs] def __init__(
self, batch_size: int = 64, num_workers: int = 0, size: int = 256, **kwargs: Any
) -> None:
"""Initialize a new GeoNRWDataModule instance.
Args:
batch_size: Size of each mini-batch.
num_workers: Number of workers for parallel data loading.
size: resize images of input size 1000x1000 to size x size
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.GeoNRW`.
"""
super().__init__(GeoNRW, batch_size, num_workers, **kwargs)
self.train_aug = AugmentationSequential(
K.Resize(size),
K.RandomHorizontalFlip(p=0.5),
K.RandomVerticalFlip(p=0.5),
data_keys=['image', 'mask'],
)
self.aug = AugmentationSequential(K.Resize(size), data_keys=['image', 'mask'])
self.size = size
[docs] def setup(self, stage: str) -> None:
"""Set up datasets.
Args:
stage: Either 'fit', 'validate', 'test', or 'predict'.
"""
if stage in ['fit', 'validate']:
dataset = GeoNRW(split='train', **self.kwargs)
city_paths = [os.path.dirname(path) for path in dataset.file_list]
train_indices, val_indices = group_shuffle_split(
city_paths, test_size=0.2, random_state=0
)
self.train_dataset = Subset(dataset, train_indices)
self.val_dataset = Subset(dataset, val_indices)
if stage in ['test']:
self.test_dataset = GeoNRW(split='test', **self.kwargs)