Source code for torchgeo.datamodules.deepglobelandcover
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""DeepGlobe Land Cover Classification Challenge datamodule."""
from typing import Any
import kornia.augmentation as K
import torch
from torch.utils.data import random_split
from ..datasets import DeepGlobeLandCover
from ..samplers.utils import _to_tuple
from ..transforms import AugmentationSequential
from ..transforms.transforms import _RandomNCrop
from .geo import NonGeoDataModule
[docs]class DeepGlobeLandCoverDataModule(NonGeoDataModule):
"""LightningDataModule implementation for the DeepGlobe Land Cover dataset.
Uses the train/test splits from the dataset.
"""
[docs] def __init__(
self,
batch_size: int = 64,
patch_size: tuple[int, int] | int = 64,
val_split_pct: float = 0.2,
num_workers: int = 0,
**kwargs: Any,
) -> None:
"""Initialize a new DeepGlobeLandCoverDataModule instance.
Args:
batch_size: Size of each mini-batch.
patch_size: Size of each patch, either ``size`` or ``(height, width)``.
Should be a multiple of 32 for most segmentation architectures.
val_split_pct: Percentage of the dataset to use as a validation set.
num_workers: Number of workers for parallel data loading.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.DeepGlobeLandCover`.
"""
super().__init__(DeepGlobeLandCover, 1, num_workers, **kwargs)
self.patch_size = _to_tuple(patch_size)
self.val_split_pct = val_split_pct
self.aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
_RandomNCrop(self.patch_size, batch_size),
data_keys=['image', 'mask'],
)
[docs] def setup(self, stage: str) -> None:
"""Set up datasets.
Args:
stage: Either 'fit', 'validate', 'test', or 'predict'.
"""
if stage in ['fit', 'validate']:
self.dataset = DeepGlobeLandCover(split='train', **self.kwargs)
generator = torch.Generator().manual_seed(0)
self.train_dataset, self.val_dataset = random_split(
self.dataset, [1 - self.val_split_pct, self.val_split_pct], generator
)
if stage in ['test']:
self.test_dataset = DeepGlobeLandCover(split='test', **self.kwargs)