Shortcuts

Source code for torchgeo.datamodules.cowc

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""COWC datamodule."""

from typing import Any

from torch import Generator
from torch.utils.data import random_split

from ..datasets import COWCCounting
from .geo import NonGeoDataModule


[docs]class COWCCountingDataModule(NonGeoDataModule): """LightningDataModule implementation for the COWC Counting dataset."""
[docs] def __init__( self, batch_size: int = 64, num_workers: int = 0, **kwargs: Any ) -> None: """Initialize a new COWCCountingDataModule instance. Args: batch_size: Size of each mini-batch. num_workers: Number of workers for parallel data loading. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.COWCCounting`. """ super().__init__(COWCCounting, batch_size, num_workers, **kwargs)
[docs] def setup(self, stage: str) -> None: """Set up datasets. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ self.dataset = COWCCounting(split='train', **self.kwargs) self.test_dataset = COWCCounting(split='test', **self.kwargs) self.train_dataset, self.val_dataset = random_split( self.dataset, [len(self.dataset) - len(self.test_dataset), len(self.test_dataset)], generator=Generator().manual_seed(0), )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources