Source code for torchgeo.datasets.gbif

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""Dataset for the Global Biodiversity Information Facility."""

import glob
import os
import sys
from datetime import datetime, timedelta
from typing import Any, Dict, Tuple

import numpy as np
from import CRS

from .geo import GeoDataset
from .utils import BoundingBox

def _disambiguate_timestamps(
    year: float, month: float, day: float
) -> Tuple[float, float]:
    """Disambiguate partial timestamps.

    Based on :func:`torchgeo.datasets.utils.disambiguate_timestamps`.

        year: year, possibly nan
        month: month, possibly nan
        day: day, possibly nan

        minimum and maximum possible time range
    if np.isnan(year):
        # No temporal info
        return 0, sys.maxsize
    elif np.isnan(month):
        # Year resolution
        mint = datetime(int(year), 1, 1)
        maxt = datetime(int(year) + 1, 1, 1)
    elif np.isnan(day):
        # Month resolution
        mint = datetime(int(year), int(month), 1)
        if month == 12:
            maxt = datetime(int(year) + 1, 1, 1)
            maxt = datetime(int(year), int(month) + 1, 1)
        # Day resolution
        mint = datetime(int(year), int(month), int(day))
        maxt = mint + timedelta(days=1)

    maxt -= timedelta(microseconds=1)

    return mint.timestamp(), maxt.timestamp()

class GBIF(GeoDataset):
    """Dataset for the Global Biodiversity Information Facility.

    `GBIF <>`__, the Global Biodiversity Information Facility,
    is an international network and data infrastructure funded by the world's
    governments and aimed at providing anyone, anywhere, open access to data about
    all types of life on Earth.

    This dataset is intended for use with GBIF's
    `occurrence records <>`_. It may or may not
    work for other GBIF `datasets <>`_. Data for a
    particular species or region of interest can be downloaded from the above link.

    If you use a GBIF dataset in your research, please cite it according to:


    .. note::
       This dataset requires the following additional library to be installed:

       * `pandas <>`_ to load CSV files

    .. versionadded:: 0.3

    res = 0
    _crs = CRS.from_epsg(4326)  # Lat/Lon

[docs] def __init__(self, root: str = "data") -> None: """Initialize a new Dataset instance. Args: root: root directory where dataset can be found Raises: FileNotFoundError: if no files are found in ``root`` ImportError: if pandas is not installed """ super().__init__() self.root = root files = glob.glob(os.path.join(root, "**.csv")) if not files: raise FileNotFoundError(f"Dataset not found in `root={self.root}`") try: import pandas as pd # noqa: F401 except ImportError: raise ImportError( "pandas is not installed and is required to use this dataset" ) # Read tab-delimited CSV file data = pd.read_table( files[0], engine="c", usecols=["decimalLatitude", "decimalLongitude", "day", "month", "year"], ) # Convert from pandas DataFrame to rtree Index i = 0 for y, x, day, month, year in data.itertuples(index=False, name=None): # Skip rows without lat/lon if np.isnan(y) or np.isnan(x): continue mint, maxt = _disambiguate_timestamps(year, month, day) coords = (x, x, y, y, mint, maxt) self.index.insert(i, coords) i += 1
[docs] def __getitem__(self, query: BoundingBox) -> Dict[str, Any]: """Retrieve metadata indexed by query. Args: query: (minx, maxx, miny, maxy, mint, maxt) coordinates to index Returns: sample of metadata at that index Raises: IndexError: if query is not found in the index """ hits = self.index.intersection(tuple(query), objects=True) bboxes = [hit.bbox for hit in hits] if not bboxes: raise IndexError( f"query: {query} not found in index with bounds: {self.bounds}" ) sample = {"crs":, "bbox": bboxes} return sample

© Copyright 2021, Microsoft Corporation. Revision 34680c94.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources