Shortcuts

Source code for torchgeo.datasets.fair1m

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""FAIR1M dataset."""

import glob
import os
from collections.abc import Callable
from typing import Any, cast
from xml.etree.ElementTree import Element, parse

import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib.figure import Figure
from PIL import Image
from torch import Tensor

from .geo import NonGeoDataset
from .utils import DatasetNotFoundError, check_integrity, download_url, extract_archive


def parse_pascal_voc(path: str) -> dict[str, Any]:
    """Read a PASCAL VOC annotation file.

    Args:
        path: path to xml file

    Returns:
        dict of image filename, points, and class labels
    """
    et = parse(path)
    element = et.getroot()
    source = cast(Element, element.find("source"))
    filename = cast(Element, source.find("filename")).text
    labels, points = [], []
    objects = cast(Element, element.find("objects"))
    for obj in objects.findall("object"):
        elm_points = cast(Element, obj.find("points"))
        lis_points = elm_points.findall("point")
        str_points = []
        for point in lis_points:
            text = cast(str, point.text)
            str_points.append(text.split(","))
        tup_points = [(float(p1), float(p2)) for p1, p2 in str_points]
        possibleresult = cast(Element, obj.find("possibleresult"))
        name = cast(Element, possibleresult.find("name"))
        label = name.text
        labels.append(label)
        points.append(tup_points)
    return dict(filename=filename, points=points, labels=labels)


[docs]class FAIR1M(NonGeoDataset): """FAIR1M dataset. The `FAIR1M <https://www.gaofen-challenge.com/benchmark>`__ dataset is a dataset for remote sensing fine-grained oriented object detection. Dataset features: * 15,000+ images with 0.3-0.8 m per pixel resolution (1,000-10,000 px) * 1 million object instances * 5 object categories, 37 object sub-categories * three spectral bands - RGB * images taken by Gaofen satellites and Google Earth Dataset format: * images are three-channel tiffs * labels are xml files with PASCAL VOC like annotations Dataset classes: 0. Passenger Ship 1. Motorboat 2. Fishing Boat 3. Tugboat 4. other-ship 5. Engineering Ship 6. Liquid Cargo Ship 7. Dry Cargo Ship 8. Warship 9. Small Car 10. Bus 11. Cargo Truck 12. Dump Truck 13. other-vehicle 14. Van 15. Trailer 16. Tractor 17. Excavator 18. Truck Tractor 19. Boeing737 20. Boeing747 21. Boeing777 22. Boeing787 23. ARJ21 24. C919 25. A220 26. A321 27. A330 28. A350 29. other-airplane 30. Baseball Field 31. Basketball Court 32. Football Field 33. Tennis Court 34. Roundabout 35. Intersection 36. Bridge If you use this dataset in your research, please cite the following paper: * https://doi.org/10.1016/j.isprsjprs.2021.12.004 .. versionadded:: 0.2 """ classes = { "Passenger Ship": {"id": 0, "category": "Ship"}, "Motorboat": {"id": 1, "category": "Ship"}, "Fishing Boat": {"id": 2, "category": "Ship"}, "Tugboat": {"id": 3, "category": "Ship"}, "other-ship": {"id": 4, "category": "Ship"}, "Engineering Ship": {"id": 5, "category": "Ship"}, "Liquid Cargo Ship": {"id": 6, "category": "Ship"}, "Dry Cargo Ship": {"id": 7, "category": "Ship"}, "Warship": {"id": 8, "category": "Ship"}, "Small Car": {"id": 9, "category": "Vehicle"}, "Bus": {"id": 10, "category": "Vehicle"}, "Cargo Truck": {"id": 11, "category": "Vehicle"}, "Dump Truck": {"id": 12, "category": "Vehicle"}, "other-vehicle": {"id": 13, "category": "Vehicle"}, "Van": {"id": 14, "category": "Vehicle"}, "Trailer": {"id": 15, "category": "Vehicle"}, "Tractor": {"id": 16, "category": "Vehicle"}, "Excavator": {"id": 17, "category": "Vehicle"}, "Truck Tractor": {"id": 18, "category": "Vehicle"}, "Boeing737": {"id": 19, "category": "Airplane"}, "Boeing747": {"id": 20, "category": "Airplane"}, "Boeing777": {"id": 21, "category": "Airplane"}, "Boeing787": {"id": 22, "category": "Airplane"}, "ARJ21": {"id": 23, "category": "Airplane"}, "C919": {"id": 24, "category": "Airplane"}, "A220": {"id": 25, "category": "Airplane"}, "A321": {"id": 26, "category": "Airplane"}, "A330": {"id": 27, "category": "Airplane"}, "A350": {"id": 28, "category": "Airplane"}, "other-airplane": {"id": 29, "category": "Airplane"}, "Baseball Field": {"id": 30, "category": "Court"}, "Basketball Court": {"id": 31, "category": "Court"}, "Football Field": {"id": 32, "category": "Court"}, "Tennis Court": {"id": 33, "category": "Court"}, "Roundabout": {"id": 34, "category": "Road"}, "Intersection": {"id": 35, "category": "Road"}, "Bridge": {"id": 36, "category": "Road"}, } filename_glob = { "train": os.path.join("train", "**", "images", "*.tif"), "val": os.path.join("validation", "images", "*.tif"), "test": os.path.join("test", "images", "*.tif"), } directories = { "train": ( os.path.join("train", "part1", "images"), os.path.join("train", "part1", "labelXml"), os.path.join("train", "part2", "images"), os.path.join("train", "part2", "labelXml"), ), "val": ( os.path.join("validation", "images"), os.path.join("validation", "labelXml"), ), "test": (os.path.join("test", "images")), } paths = { "train": ( os.path.join("train", "part1", "images.zip"), os.path.join("train", "part1", "labelXml.zip"), os.path.join("train", "part2", "images.zip"), os.path.join("train", "part2", "labelXmls.zip"), ), "val": ( os.path.join("validation", "images.zip"), os.path.join("validation", "labelXmls.zip"), ), "test": ( os.path.join("test", "images0.zip"), os.path.join("test", "images1.zip"), os.path.join("test", "images2.zip"), ), } urls = { "train": ( "https://drive.google.com/file/d/1LWT_ybL-s88Lzg9A9wHpj0h2rJHrqrVf", "https://drive.google.com/file/d/1CnOuS8oX6T9JMqQnfFsbmf7U38G6Vc8u", "https://drive.google.com/file/d/1cx4MRfpmh68SnGAYetNlDy68w0NgKucJ", "https://drive.google.com/file/d/1RFVjadTHA_bsB7BJwSZoQbiyM7KIDEUI", ), "val": ( "https://drive.google.com/file/d/1lSSHOD02B6_sUmr2b-R1iqhgWRQRw-S9", "https://drive.google.com/file/d/1sTTna1C5n3Senpfo-73PdiNilnja1AV4", ), "test": ( "https://drive.google.com/file/d/1HtOOVfK9qetDBjE7MM0dK_u5u7n4gdw3", "https://drive.google.com/file/d/1iXKCPmmJtRYcyuWCQC35bk97NmyAsasq", "https://drive.google.com/file/d/1oUc25FVf8Zcp4pzJ31A1j1sOLNHu63P0", ), } md5s = { "train": ( "a460fe6b1b5b276bf856ce9ac72d6568", "80f833ff355f91445c92a0c0c1fa7414", "ad237e61dba304fcef23cd14aa6c4280", "5c5948e68cd0f991a0d73f10956a3b05", ), "val": ("dce782be65405aa381821b5f4d9eac94", "700b516a21edc9eae66ca315b72a09a1"), "test": ( "fb8ccb274f3075d50ac9f7803fbafd3d", "dc9bbbdee000e97f02276aa61b03e585", "700b516a21edc9eae66ca315b72a09a1", ), } image_root: str = "images" label_root: str = "labelXml"
[docs] def __init__( self, root: str = "data", split: str = "train", transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, download: bool = False, checksum: bool = False, ) -> None: """Initialize a new FAIR1M dataset instance. Args: root: root directory where dataset can be found transforms: a function/transform that takes input sample and its target as entry and returns a transformed version checksum: if True, check the MD5 of the downloaded files (may be slow) Raises: AssertionError: if ``split`` argument is invalid DatasetNotFoundError: If dataset is not found. .. versionchanged:: 0.5 Added *split* and *download* parameters. """ assert split in self.directories self.root = root self.split = split self.transforms = transforms self.download = download self.checksum = checksum self._verify() self.files = sorted( glob.glob(os.path.join(self.root, self.filename_glob[split])) )
[docs] def __getitem__(self, index: int) -> dict[str, Tensor]: """Return an index within the dataset. Args: index: index to return Returns: data and label at that index """ path = self.files[index] image = self._load_image(path) sample = {"image": image} if self.split != "test": label_path = path.replace(self.image_root, self.label_root) label_path = label_path.replace(".tif", ".xml") voc = parse_pascal_voc(label_path) boxes, labels = self._load_target(voc["points"], voc["labels"]) sample = {"image": image, "boxes": boxes, "label": labels} if self.transforms is not None: sample = self.transforms(sample) return sample
[docs] def __len__(self) -> int: """Return the number of data points in the dataset. Returns: length of the dataset """ return len(self.files)
def _load_image(self, path: str) -> Tensor: """Load a single image. Args: path: path to image Returns: the image """ with Image.open(path) as img: array: "np.typing.NDArray[np.int_]" = np.array(img.convert("RGB")) tensor = torch.from_numpy(array) # Convert from HxWxC to CxHxW tensor = tensor.permute((2, 0, 1)) return tensor def _load_target( self, points: list[list[tuple[float, float]]], labels: list[str] ) -> tuple[Tensor, Tensor]: """Load the target mask for a single image. Args: points: list of point tuple lists labels: list of class labels Returns: the target bounding boxes and labels """ labels_list = [self.classes[label]["id"] for label in labels] boxes = torch.tensor(points).to(torch.float) labels_tensor = torch.tensor(labels_list) return boxes, labels_tensor def _verify(self) -> None: """Verify the integrity of the dataset.""" # Check if the directories already exist exists = [] for directory in self.directories[self.split]: exists.append(os.path.exists(os.path.join(self.root, directory))) if all(exists): return # Check if .zip files already exists (if so extract) exists = [] paths = self.paths[self.split] md5s = self.md5s[self.split] for path, md5 in zip(paths, md5s): filepath = os.path.join(self.root, path) if os.path.isfile(filepath): if self.checksum and not check_integrity(filepath, md5): raise RuntimeError("Dataset found, but corrupted.") exists.append(True) extract_archive(filepath) else: exists.append(False) if all(exists): return if self.download: self._download() return raise DatasetNotFoundError(self) def _download(self) -> None: """Download the dataset and extract it.""" paths = self.paths[self.split] urls = self.urls[self.split] md5s = self.md5s[self.split] for directory in self.directories[self.split]: os.makedirs(os.path.join(self.root, directory), exist_ok=True) for path, url, md5 in zip(paths, urls, md5s): filepath = os.path.join(self.root, path) if not os.path.exists(filepath): download_url( url=url, root=os.path.dirname(filepath), filename=os.path.basename(filepath), md5=md5 if self.checksum else None, ) extract_archive(filepath)
[docs] def plot( self, sample: dict[str, Tensor], show_titles: bool = True, suptitle: str | None = None, ) -> Figure: """Plot a sample from the dataset. Args: sample: a sample returned by :meth:`__getitem__` show_titles: flag indicating whether to show titles above each panel suptitle: optional string to use as a suptitle Returns: a matplotlib Figure with the rendered sample """ image = sample["image"].permute((1, 2, 0)).numpy() ncols = 1 if "prediction_boxes" in sample: ncols += 1 fig, axs = plt.subplots(ncols=ncols, figsize=(ncols * 10, 10)) if ncols < 2: axs = [axs] axs[0].imshow(image) axs[0].axis("off") if "boxes" in sample: polygons = [ patches.Polygon(points, color="r", fill=False) for points in sample["boxes"].numpy() ] for polygon in polygons: axs[0].add_patch(polygon) if show_titles: axs[0].set_title("Ground Truth") if ncols > 1: axs[1].imshow(image) axs[1].axis("off") polygons = [ patches.Polygon(points, color="r", fill=False) for points in sample["prediction_boxes"].numpy() ] for polygon in polygons: axs[0].add_patch(polygon) if show_titles: axs[1].set_title("Predictions") if suptitle is not None: plt.suptitle(suptitle) return fig

© Copyright 2021, Microsoft Corporation. Revision acad7d47.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
stable
v0.5.2
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.1
v0.3.0
v0.2.1
v0.2.0
v0.1.1
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources