Source code for torchgeo.datasets.eudem

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""European Digital Elevation Model (EU-DEM) dataset."""

import glob
import os
from typing import Any, Callable, Dict, Optional

import matplotlib.pyplot as plt
from import CRS

from .geo import RasterDataset
from .utils import check_integrity, extract_archive

class EUDEM(RasterDataset):
    """European Digital Elevation Model (EU-DEM) Dataset.

    The `EU-DEM
    dataset is a Digital Elevation Model of reference for the entire European region.
    The dataset can be downloaded from this `website
    after making an account. A dataset factsheet is available
    `here <>`__.

    Dataset features:

    * DEMs at 25 m per pixel spatial resolution (~40,000x40,0000 px)
    * vertical accuracy of +/- 7 m RMSE
    * data fused from `ASTER GDEM
      `SRTM <>`_ and Russian topomaps

    Dataset format:

    * DEMs are single-channel tif files

    If you use this dataset in your research, please give credit to:

    * `Copernicus <>`_

    .. versionadded:: 0.3

    is_image = False
    filename_glob = "eu_dem_v11_*.TIF"
    zipfile_glob = "eu_dem_v11_*[A-Z0-9].zip"
    filename_regex = "(?P<name>[eudem_v11]{10})_(?P<id>[A-Z0-9]{6})"

    md5s = {
        "": "96edc7e11bc299b994e848050d6be591",
        "": "e14be147ac83eddf655f4833d55c1571",
        "": "2eb5187e4d827245b33768404529c709",
        "": "1afc162eb131841aed0d00b692b870a8",
        "": "77b040791b9fb7de271b3f47130b4e0c",
        "": "89b965abdcb1dbd479c61117f55230c8",
        "": "f5cb1b05813ae8ffc9e70f0ad56cc372",
        "": "81be551ff646802d7d820385de7476e9",
        "": "bbc351713ea3eb7e9eb6794acb9e4bc8",
        "": "68fb95aac33a025c4f35571f32f237ff",
        "": "da8ad029f9cc1ec9234ea3e7629fe18d",
        "": "de27c78d0176e45aec5c9e462a95749c",
        "": "4c00e58b624adfc4a5748c922e77ee40",
        "": "4a21a88f4d2047b8995d1101df0b3a77",
        "": "32fdf4572581eddc305a21c5d2f4bc81",
        "": "71b027f29258493dd751cfd63f08578f",
        "": "c6c21289882c1f74fc4649d255302c64",
        "": "9f26e6e47f4160ef8ea5200e8cf90a45",
        "": "a8c3c1c026cdd1537b8a3822c15834d9",
        "": "9584273c7708b8e935f2bac3e30c19c6",
        "": "8efdea43e7b6819861935d5a768a55f2",
        "": "e39e58df1c13ac35eb0b29fb651f313c",
        "": "d84395ab52ad254d930db17398fffc50",
        "": "6abe852f4a20962db0e355ffc0d695a4",
        "": "b6a3b8a39a4efc01c7e2cd8418672559",
        "": "71dc3c55ab5c90628ce2149dbd60f090",
        "": "5342465ad60cf7d28a586c9585179c35",

[docs] def __init__( self, root: str = "data", crs: Optional[CRS] = None, res: Optional[float] = None, transforms: Optional[Callable[[Dict[str, Any]], Dict[str, Any]]] = None, cache: bool = True, checksum: bool = False, ) -> None: """Initialize a new Dataset instance. Args: root: root directory where dataset can be found, here the collection of individual zip files for each tile should be found crs: :term:`coordinate reference system (CRS)` to warp to (defaults to the CRS of the first file found) res: resolution of the dataset in units of CRS (defaults to the resolution of the first file found) transforms: a function/transform that takes an input sample and returns a transformed version cache: if True, cache file handle to speed up repeated sampling checksum: if True, check the MD5 of the downloaded files (may be slow) Raises: FileNotFoundError: if no files are found in ``root`` """ self.root = root self.checksum = checksum self._verify() super().__init__(root, crs, res, transforms=transforms, cache=cache)
def _verify(self) -> None: """Verify the integrity of the dataset. Raises: RuntimeError: if dataset is missing or checksum fails """ # Check if the extracted file already exists pathname = os.path.join(self.root, self.filename_glob) if glob.glob(pathname): return # Check if the zip files have already been downloaded pathname = os.path.join(self.root, self.zipfile_glob) if glob.glob(pathname): for zipfile in glob.iglob(pathname): filename = os.path.basename(zipfile) if self.checksum and not check_integrity(zipfile, self.md5s[filename]): raise RuntimeError("Dataset found, but corrupted.") extract_archive(zipfile) return raise RuntimeError( f"Dataset not found in `root={self.root}` " "either specify a different `root` directory or make sure you " "have manually downloaded the dataset as suggested in the documentation." )
[docs] def plot( self, sample: Dict[str, Any], show_titles: bool = True, suptitle: Optional[str] = None, ) -> plt.Figure: """Plot a sample from the dataset. Args: sample: a sample returned by :meth:`RasterDataset.__getitem__` show_titles: flag indicating whether to show titles above each panel suptitle: optional string to use as a suptitle Returns: a matplotlib Figure with the rendered sample """ mask = sample["mask"].squeeze() ncols = 1 showing_predictions = "prediction" in sample if showing_predictions: pred = sample["prediction"].squeeze() ncols = 2 fig, axs = plt.subplots(nrows=1, ncols=ncols, figsize=(ncols * 4, 4)) if showing_predictions: axs[0].imshow(mask) axs[0].axis("off") axs[1].imshow(pred) axs[1].axis("off") if show_titles: axs[0].set_title("Mask") axs[1].set_title("Prediction") else: axs.imshow(mask) axs.axis("off") if show_titles: axs.set_title("Mask") if suptitle is not None: plt.suptitle(suptitle) return fig

© Copyright 2021, Microsoft Corporation. Revision 34680c94.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources