Shortcuts

Source code for torchgeo.datamodules.so2sat

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""So2Sat datamodule."""

from typing import Any

import torch
from torch import Generator, Tensor
from torch.utils.data import random_split

from ..datasets import So2Sat
from .geo import NonGeoDataModule


[docs]class So2SatDataModule(NonGeoDataModule): """LightningDataModule implementation for the So2Sat dataset. If using the version 2 dataset, we use the train/val/test splits from the dataset. If using the version 3 datasets, we use a random 80/20 train/val split from the "train" set and use the "test" set as the test set. """ means_per_version: dict[str, Tensor] = { "2": torch.tensor( [ -0.00003591224260, -0.00000765856128, 0.00005937385750, 0.00002516623150, 0.04420110660000, 0.25761027100000, 0.00075567433700, 0.00135034668000, 0.12375696117681, 0.10927746363683, 0.10108552032678, 0.11423986161140, 0.15926566920230, 0.18147236008771, 0.17457403122913, 0.19501607349635, 0.15428468872076, 0.10905050699570, ] ), "3_random": torch.tensor( [ -0.00005541164581, -0.00001363245448, 0.00004558943283, 0.00002990907940, 0.04451951629749, 0.25862310103671, 0.00032720731137, 0.00123416595462, 0.12428656593186, 0.11001677362564, 0.10230652367417, 0.11532195526186, 0.15989486018315, 0.18204406482475, 0.17513562590622, 0.19565546643221, 0.15648722649020, 0.11122536338577, ] ), "3_block": torch.tensor( [ -0.00004632368791, 0.00001260869365, 0.00005305557337, 0.00003471369557, 0.04449937686171, 0.26046026815721, 0.00087815394475, 0.00086889627435, 0.12381869777901, 0.10944155483024, 0.10176911573221, 0.11465267892206, 0.15870528223797, 0.18053964470203, 0.17366821871719, 0.19390983961551, 0.15536490486611, 0.11057334452833, ] ), } means_per_version["3_culture_10"] = means_per_version["2"] stds_per_version: dict[str, Tensor] = { "2": torch.tensor( [ 0.17555201, 0.17556463, 0.45998793, 0.45598876, 2.85599092, 8.32480061, 2.44987574, 1.46473530, 0.03958795, 0.04777826, 0.06636616, 0.06358874, 0.07744387, 0.09101635, 0.09218466, 0.10164581, 0.09991773, 0.08780632, ] ), "3_random": torch.tensor( [ 0.1756914, 0.1761190, 0.4600589, 0.4563601, 2.2492179, 7.9056503, 2.1917633, 1.3148480, 0.0392269, 0.0470917, 0.0653264, 0.0624057, 0.0758367, 0.0891717, 0.0905092, 0.0996856, 0.0990188, 0.0873386, ] ), "3_block": torch.tensor( [ 0.1751797, 0.1754073, 0.4610124, 0.4572122, 0.8294254, 7.1771026, 0.9642598, 0.8770835, 0.0388311, 0.0464986, 0.0643833, 0.0616141, 0.0753004, 0.0886178, 0.0899500, 0.0991759, 0.0983276, 0.0865943, ] ), } stds_per_version["3_culture_10"] = stds_per_version["2"]
[docs] def __init__( self, batch_size: int = 64, num_workers: int = 0, band_set: str = "all", val_split_pct: float = 0.2, **kwargs: Any, ) -> None: """Initialize a new So2SatDataModule instance. Args: batch_size: Size of each mini-batch. num_workers: Number of workers for parallel data loading. band_set: One of 'all', 's1', 's2', or 'rgb'. val_split_pct: Percentage of training data to use for validation in with the version 3 datasets. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.So2Sat`. .. versionadded:: 0.5 The *val_split_pct* parameter, and the 'rgb' argument to *band_set*. """ # https://github.com/Lightning-AI/lightning/issues/18616 kwargs["version"] = str(kwargs.get("version", "2")) version = kwargs["version"] kwargs["bands"] = So2Sat.BAND_SETS[band_set] self.val_split_pct = val_split_pct if band_set == "s1": self.mean = self.means_per_version[version][:8] self.std = self.stds_per_version[version][:8] elif band_set == "s2": self.mean = self.means_per_version[version][8:] self.std = self.stds_per_version[version][8:] elif band_set == "rgb": self.mean = self.means_per_version[version][[10, 9, 8]] self.std = self.stds_per_version[version][[10, 9, 8]] super().__init__(So2Sat, batch_size, num_workers, **kwargs)
[docs] def setup(self, stage: str) -> None: """Set up datasets. Called at the beginning of fit, validate, test, or predict. During distributed training, this method is called from every process across all the nodes. Setting state here is recommended. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ if self.kwargs.get("version", "2") == "2": if stage in ["fit"]: self.train_dataset = So2Sat(split="train", **self.kwargs) if stage in ["fit", "validate"]: self.val_dataset = So2Sat(split="validation", **self.kwargs) if stage in ["test"]: self.test_dataset = So2Sat(split="test", **self.kwargs) else: if stage in ["fit", "validate"]: dataset = So2Sat(split="train", **self.kwargs) val_length = round(len(dataset) * self.val_split_pct) train_length = len(dataset) - val_length self.train_dataset, self.val_dataset = random_split( dataset, [train_length, val_length], generator=Generator().manual_seed(0), ) if stage in ["test"]: self.test_dataset = So2Sat(split="test", **self.kwargs)

© Copyright 2021, Microsoft Corporation. Revision 0e2c76d3.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
stable
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.1
v0.3.0
v0.2.1
v0.2.0
v0.1.1
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources