Source code for torchgeo.datamodules.loveda
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""LoveDA datamodule."""
from typing import Any
from ..datasets import LoveDA
from .geo import NonGeoDataModule
[docs]class LoveDADataModule(NonGeoDataModule):
"""LightningDataModule implementation for the LoveDA dataset.
Uses the train/val/test splits from the dataset.
.. versionadded:: 0.2
"""
[docs] def __init__(
self, batch_size: int = 32, num_workers: int = 0, **kwargs: Any
) -> None:
"""Initialize a new LoveDADataModule instance.
Args:
batch_size: Size of each mini-batch.
num_workers: Number of workers for parallel data loading.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.LoveDA`.
"""
super().__init__(LoveDA, batch_size, num_workers, **kwargs)
[docs] def setup(self, stage: str) -> None:
"""Set up datasets.
Args:
stage: Either 'fit', 'validate', 'test', or 'predict'.
"""
if stage in ['fit']:
self.train_dataset = LoveDA(split='train', **self.kwargs)
if stage in ['fit', 'validate']:
self.val_dataset = LoveDA(split='val', **self.kwargs)
if stage in ['predict']:
# Test set masks are not public, use for prediction instead
self.predict_dataset = LoveDA(split='test', **self.kwargs)